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Abstract-This paper presents a linear analysis of a shallow prolate spheroidal shell with a planar elliptical
boundary. The shell is subjected to a uniform load, q, and clamped along the boundary. The theory used in
this paper is characterized by the well known Mushtari-Donnell-Vlasov equations which consist of a
compatibility equation and an equilibrium equation where the normal displacement, w, and a stress function,
q" are the dependent variables.

The method employed for the solution of this problem is developed in three major stages. The first stage
involves the determination of w, under the assumption that the contours of w be ellipses concentric to the
boundary. The second stage is devoted to the determination of a stress function q, which, together with w,
satisfies the MDV compatibility equation exactly. The third stage of the development is concerned with the
computation of a loading, q*, which, together with wand q" satisfies the equilibrium equation exactly and
which is nearly equal to the desired uniform loading q.

NOTATION
A" A, Lame' parameters

a Major axis of the complete spheroid
Bjm Constants

b Minor axis of the complete spheroid
C" C2 , C, Constants of integration

c" c" c, C,/wo, C2/wo, C,/wo respectively
E Modulus of elasticity

E(x), F(x) Bessel-type functions
F/m Constants
Ho Height of shallow spheroid

H(i, n, j, m) Transformation coefficients
h Thickness
k b/a

Lo Major axis of shallow spheroid
10 Minor axis of shallow spheroid
p w//Q

Q, Q* Uniform and nonuniform distributions respectively
Q"j, Q~j Expansion coefficients for Q, Q* respectively

q, q* Uniform and nonuniform loadings respectively
R" R, Radii of curvature

s(k) Shape function
t Angular coordinate

u" u, Tangential displacements
w Normal displacement

wo, woP Maximum displacements for the shallow spheroid and an elliptical plate, respectively
Iii w/wo

w(J) Test solutions for w
w"(/), W"j Expansion coefficients for w'j) and w respectively

X" X 2, X, Cartesian coordinates
x, Xo Contour line coordinate and its value on the boundary, respectively

a" a, Principal coordinates
8 Constant
o Angular coordinate

A, A Contour line coordinates
Ao Value of A on the boundary

p" p,o, p" Constants
v Poisson's ratio

~"" Principal coordinates
q" <I> Stress functions
<I>"j Expansion coefficients for <I>

'" Error function
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J. INTRODUCTION

A generalization of the semi-inverse method used in classical elasticity theory is employed in this
paper to analyze a thin shallow prolate spheroidal shell with a planar elliptical boundary (see Fig.
1). The shell is subjected to a uniform load and clamped along the boundary.

Because of the elliptical shape of the boundary curve of the shell, the concept of axial (or
rotational) symmetry cannot be utilized to simplify the analysis. Further, a coordinate system
involving the lines of principal curvature will not include the boundary curve as a member of the
family of coordinate lines-thus making it very difficult to express the boundary conditions.

The bending analysis of a shallow shell of elliptical planform was apparently first discussed by
Surkin[l] in an approximate analysis of the post buckling behavior of prolate spheroidal shells
under uniform pressure. An improved Rayleigh-Ritz formulation of the problem was presented by
Hyman[2] in terms of a coordinate system in which one family of the new coordinate curves
coincides with the edge of the shallow cap, thus greatly simplifying the boundary conditions. This
family of curves, constructed by intersecting the middle surface with planes parallel to the plane
containing the base ellipse, will henceforth be referred to as the "constant A(or A) lines". In that
paper, Hyman assumed that both the normal displacement wand the in-plane displacements of
shallow spheroidal shells which are nearly circular in planform are dependent upon A only.

These constant Alines also appeared in the works by Nash [3] in the large deflection analysis of
elliptical plates, by Mazumdar[4-7] in the analysis of plates and membranes, by Broome [8, 9],
Jones [10], and by Jones and Mazumdar[ll] in the analysis of the shallow spheroidal shell which is.
under consideration here.

In Jones' analysis, the governing equations are in the form of two integro-differential
equilibrium equations and one differential continuity equation, with the unknowns being the
vertical displacement w, a stress function 4>, and a function expressing the contour curves of w.
By assuming that the contour curves coincide with the constant A lines, i.e. w = w(,\), Jones and
Mazumdar show that the two equilibrium equations are identical, thus, reducing the problem to
two equations with two unknowns. Exact solutions to these two equations, were obtained by
further assuming that 4> = 4> ('\).

In this paper we present a semi-inverse contour method developed by Broome [9] for solving
the problem of the shallow spheroid subjected to a uniform loading, q. The shell theory used in
this paper is characterized by the well-known Mushtari-Donnell-Vlasov (MDV) equations which
consist of a compatibility equation and an equilibrium equation where the normal displacement,
w, and a stress function, 4>, are the dependent variables. The semi-inverse contour method as
utilized herein involves the selection of wand the determination of 4> such that the compatibility
equation and the equilibrium equation are satisfied exactly for a loading q* which differs only
slightly from the uniform loading q.

The method employed for the solution of this problem is developed in three major stages. The
first stage involves the selection of w. Obviously an arbitrary choice of w cannot guarantee a
solution such that q* ~ q. Therefore a procedure for the selection of a reasonable w by
consideration of contour curves is presented. The second stage is devoted to the determination of
a stress function 4> which, together with w, satisfies the MDV compatibility equation exactly. The
third stage of the development is concerned with computation of the ratio q*/q and comparing
the magnitude of this ratio with unity.

Fig. 1. Geometry of the middle surface of a prolate spheroidal shell showing the shallow spheroid.
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2. THE CONTOUR EQUATION

In this section an equation (called the contour equation) in which w is the only dependent
variable is separated from the MDV equations under the assumption that the loading is uniform,
(i.e. q is constant). Then a transformation from the independent variables of this equation to a
new coordinate system (A, t) is introduced where it is assumed that w is dependent upon A only.

The MDV-equations are given by [12]

(2.la)

and

(2.lb)

where the operators V2 and D2 are defined by

(2.2a)

(2.2b)

where A1 and A2 are the Lame coefficients and R 1 and R2 are the radii of curvature of the cap. In
terms of the planform dimensions and the rise of the cap, these parameters are (see Fig. 1)

AI = b = 100 + (Ho/lo)2)/(2Ho/lo)

A 2= a = LoO + (Ho/lo)2)/(2Ho/lo)

R 1 =b=A I

R 2 = alk,

k = 101L o = b1a.

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

By operating on eqn (2.la) with D 2 and eqn (2..lb) with O/Eh)V\ then adding the resulting
equations and observing the commutativity of V2 and D 2

, it can be concluded that

(2.4a)

where

(2.4b)

This equation will henceforth be called the "contour" equation. The contour equation will
now be transformed to a A, t-system.

The A, t -system presented in this paper is one in which the constant A lines are ellipses
formed by intersecting the shell with planes parallel to the boundary. The constant t lines are
formed by the intersections of the shell's middle surface with planes containing the X2-axis (see
Fig. 2). This particular coordinate system was selected since the constant A lines represent a
generalization of the known contour lines of w for three extreme cases: the shallow spherical cap
(k = I), the infinitely long cylindrical cap (k =0), and the flat elliptical plate [13].

Taking into account the fact that the shell is shallow, the A, t-coordinate system can be
defined by the transformation

lYl = A cos t

lY2 = A sin t

(2.5a)

(2.5b)
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Fig. 2. Geometry of the middle surface of the shallow spheroid showing the A, t coordinate system.

A =Y1-(X2/R,)2

tan t = k tan 8 = k(X3/X,).

(2.5c)

(2.5d)

Using the chain rule and the assumption that w = w(A), the contour equation transforms to
the A, t-system as

where

(2.6)

A= A/Ao (2.7a,b)

Fjm = H(8,O,j, m)+4eH(6,2,j, m)+6eH(4,4,j, m)+4eH(2, 6,j, m)+eH(O,8,j, m)

B = {H(4, 0, j, m) +2H(2, 2, j, m) +H(O, 4, j, m) . .. °~ j ~ 4 (2.8b)
jm 0 ... 5~j~8

and the H-coefficients arise from the transformation of the partial derivatives and are given in
Ref. [9], The constant Ao is the value of A at the boundary.

The ordinary differential eqn (2.6) is the transformed contour equation, Note that in terms of
the new coordinate system, the clamped boundary conditions are easily specified by requiring
that wand (dwldA) vanish at A= 1.

3. AN APPROXIMATE SOLUTION OF THE CONTOUR EQUATION

In order to be consistent with the assumption that w = w(A) the solution of the transformed
contour equation must be independent of the variable t. Therefore, since the cos jt are linearly
independent, each coefficient of the cosine terms in (2.6) must vanish, Thus

(3.1)

where the j index refers to the coefficient of cos jt.
The values for the j index are 0, 1,2, ... ,8. Thus (3.1) is a set of nine eighth order ordinary

differential equations with w as the dependent variable. Evaluation of ~m and Bjm, however,
reveals that eqn (3.1) is an identity for odd values of the j index, Hence, (3.1) is reduced to a set of
five differential equations corresponding to the values j = 0, 2, 4, 6 and 8, If an exact solution
w = w(A) exists, then each of the five differential eqn (3.1) must be satisfied by this solution.
Further, if such an exact solution exists then it can be synthesized from the solutions to each of
(3.1) for j Or 2, 4, 6, 8. Hence the solutions w°>' to each of the differential eqns (3.1)
corresponding to the index values j = 0, 2, 4, 6 and 8 shall be sought.

It will be assumed that each of the w(j) can be expanded in a Maclaurin series. By doing this,
those solutions which are unbounded at A= °are suppressed "a priori". Then

where the Wn
O

) are constants.

00

w(j)= 2: wnO)An

n-O
(3,2)
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By substituting (3.2) into (3.1) the recursion formulas for wn
O

) can be obtained using standard
techniques. From these recursions formulas the solutions W

O
) which are of the form (3.2) can be

constructed.
It can be shown that [l4], [9]

where CJ, C2 and C3 are arbitrary constants and

x =~YlLos(k)A2

where s(k) is the shape function

(3.3)

(3.3a)

s(k) = H(8, 0, 0,1);- 4H(6, 2, 0,1) +~H(4, 4, 0,1) +4~(2, 6,0,1) +H(Os' 8, 0,1) (3.4)
H(8, 0, 0,1) +4k H(6, 2, 0,1) +6k H(4, 4, 0,1) +4k H(2, 6, 0,1) + k H(O, 8, 0,1)

and

OQ 2m+l

E(x)= ~0(-1)m(2~+I)!2

~ 2m

F(x)= ~o (_1)m(tm)!2

(3.5a)

(3.5b)

The measure of (3.3) as an approximate solution to (3.1) is made in section 5 following the
determination of cf>.

4. THE DETERMINATION OF <P AND Q*

Since the dependency of cf> on Aonly has not been established, the stress function may be
expanded as

where the <l>nj are unknown coefficients,

Eh 2

o= -yr12=(=1_==;;Jl2;=)s=(k=)

and

(4.1a)

(4.1b)

-~~
ILl - 2Ao

gl = ILIa]

g2 = ILta2.
(4.1c)

The requirements that nand j are even follows directly from symmetry considerations. Future
developments may be simplified by expanding w as given in (3.3) in the form

n, j = 2, 4, 6, ... (4.2)

where the Wn/ are known coefficients which are expressed in terms of the constants CI, C2 and C3•

The substitution of (4.2) and (4.1a) into the MDV equations can be facilitated by defining new
operators

(4.3)

Vol. II No. 12-B
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Using these aforementioned operators the MDV equations can be rewritten as

\74<1> = - 41)211' (4.4a)

1)2<1> = S(k)\74w - Q (4.4b)
4

where

_ 4b 2q
(4.4c)Q - Ehk"

Substitution of (4.1) and (4.2) into (4.4a, b) yields equations for determining the coefficients <1>ni.
An examination of the general form of these resulting equations is useful at this time.

From (4.4b) with n = 0 and j = 0, we get

(4.5)

where k~o is a polynomial in k. Inspection of the equations obtained for other values of nand j
show that the coefficients <1>z2 and <1>20 appear only in eqn (4.5). Rather than solving for, say <1>20, in
terms of the unknowns Cz and <1>22, it is convenient to introduce a new arbitrary constant, C4, and a
new equation

(4.6)

Then both <1>22 and <1>20 can be solved for in terms of the unknowns C2and C4 • In matrix form, the
above two equations appear as

(4.7)

The equations for the remaining <1>ni can be grouped as follows:

(4.8)

(4.9)

In condensed notation, eqns (4.8) and (4.9) and all subsequent equations can be written as

[K]n {<1>}n = {k*}nCN
N = {I when n :4,8,12, .

2 when n - 2, 6,10, .
(4.10)

where the elements, k~q of the lower partition of {k*}n are polynomials which are dependent
upon k only, and the C, and C2 are the same arbitrary constants that appear in (3.3); the dashed
lines in (4.8) and (4.9) partition the matrices is such a way as to separate the MDV compatibility
equation (upper partition) from the MDV'equi1ibrium equations (lower partition).

The arbitrary constants CJ, C2, C" and C4 may be obtained by specifying 11', d II' IdA, u, and U2

(or T1 and T2) on the edge where i = I.
From (4.7) it is clear that the specification of C2and C4 implies a unique solution for <1>22 and

<1>20' Also, it can be shown from (4.8) that the specification of C1 implies a unique solution for <1>44,
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<l>4Z, and <1>40 in the case that 0 < k < 1. The remaining <l>nj are over-determined; which implies that
the choice of (3.3) for wand the form (4.1a) for <I> does not lead to an exact solution to the MDV
equations in the case that Q is a constant.

At this point, an approximate solution will be sought by rewriting the equilibrium equation
(4.4b) in the form

(4.11)

where Q* is now permitted to be a nonuniform loading.
By discarding the required number of rows below the dashed lines in [K]n along with the

corresponding rows in {k*}n so as to make [K]n a square matrix, solutions can be obtained for all
<l>nj. The resulting <1>, together with the choice of w (3.3), will then satisfy the MDV compatibility
eqn (4.4a), but they will not satisfy the MDV equilibrium eqn (4.4b). However, <I> and w can be
substituted into the equilibrium eqn (4.11) to yield a nonuniform loading Q*. If Q* differs only
slightly from a constant Q, then these expressions for <I> and w will be considered as constituting
an approximate solution to the uniformly loaded cap.

After determining the <l>nj by the above-described row deletion process, it can be shown that
eqn (4.11) can be written

where

and

n

0/1 = L L ~jg/gzn-j
n =2,6.10•. j =0,2.4•...

(4.12a)

(4.12b)

(4.12c)

and the ~j are constants which are determined from eqns (4.10) after the row-deletion process
has been imposed.

5. THE EVALUATION OF Q*/Q

In the previous section an exact solution was obtained for a clamped shallow spheroidal shell
subject to a nonuniform loading Q*. The error associated with using this solution as an
approximate solution to the uniformly loaded cap will be measured by the deviation of the ratio
Q*/Q from unity.

So far, only the conditions that wand dw vanish at A = 1 have been considered, leaving the
remaining two boundary conditions which concern either the inplane displacements, UI and Uz, or
the in-plane stress resultants T1 and Tz, unspecified. It will now be shown that Q* - Q without
embracing the lengthy algebraic manipulations involved in explicitly specifying and satisfying the
remaining two boundary conditions. First, introduce a nondimensional displacement

where

IV = w/wo

wo= w(A =0)

(5.1 a)

(5.1b)

is the displacement at the center of the cap, and redefine the constants of integration as

Cz = Cz/wo (5.lc)
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Then by imposing the conditions that wand dwvanish at i = 1, and w= 1at i = 0, the constants
CI, C2 and C3 may be evaluated. Thus, w is completely determined, and w is determined to within
the value of woo

Now, let w/ be the maximum normal displacement of a clamped elliptical plate with the same
planform, thickness and material properties as those of the shallow spheroid, and loaded
uniformly by Q.

From plate theory [13],

(5.2a)

where

(5.2b)

Then, substituting (5.1) and (5.2) into (4.12), yields

Q*tQ -1 = (;:~ }/J (5.3a)

where

(5.3b)

Thus, the deviation of Q*/Q from unity is given in terms of the known error function l/J
multiplied by the unknown ratio of central displacements wotw/.

A bound on the error associated with using W from (3.3) and <I> from (4.la) as the solution can
be found without computing Wo explicitly by noting that whenever

IWotw/1 < 1

the maximum error at any point is less than the known function l/J.
The function l/J has been computed for four representative shallow spheroids and the results

are plotted in Fig. 3. From the curves of constant l/J plotted in Fig. 3, it is seen that for a given
geometry, the largest errors always occur at isolated points on the boundary, which points are
removed from the major and minor axes. This latter feature is the direct consequence of a
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Fig. 3. Contours of 100rjl for quadrants of various shells.
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decision to delete certain rows in eqn (4.10) so as to assure an exact solution on the major and
minor axes. A different choice for the row deletion process could obviously have been made, and
would have resulted in a modified form of the error function !/J.

As expected, the geometrical effect was such as to give the most accurate results as the three
extreme geometries were approached i.e., circular cap, infinitely long cylindrical cap, and flat
elliptical plate. However, even for the worst case considered, k = 0·5, Ho/h = 2·00 and
Ho/21o = 0·05, the maximum error, which occured at the point on the boundary corresponding to
8 = 60°, was 29%. For this case the error is still less than 10% over most of the interior of the
shell. Note again that these values represent an upper bound to the error.

6. SUMMARY AND CONCLUSIONS

The analysis of a clamped shallow spheroidal shell under uniform pressure was made using a
semi-inverse contour method. As a means for arriving at a suitable choice for w, the MDV
equations were reduced to one equation with w as the dependent variable. Then making the
assumption that w = w(A), a functional form for w(A) was chosen which is a generalization of
the solutions for the clamped spherical cap and the clamped elliptical plate. A solution for cf> was
then obtained which, together with the chosen w, satisfied the compatibility equation exactly, and
which satisfied the equilibrium equation exactly in the case that the surface loading is
non-uniform. The maximum differences between this nonuniform loading and the given uniform
load were shown to be confined to isolated points on the boundary. It is reasonable to conclude
that by confining the errors in the loading to zones near the boundary, the effect of these errors on
the overall behavior of the shell is reduced.

The numerical calculations also demonstrate that the solutions more accurately predict the
behavior of the uniformly loaded spheroid as k ~ 1, or as k ~O, or as Ho~O, or as the thickness
increases.

In both this solution and the solution obtained independently by Jones and Mazumdar[l1] the
assumption is made that w = w(A). It is demonstrated herein that such an assumption cannot lead
to an exact solution for the uniformly loaded shell. In addition, it is further assumed in Ref. [11]
that cf> = cf> (A); no such restriction is made on the form of the stress function in this paper.
Further, an upper bound on the error associated with this solution has been presented. No
measure of the accuracy of the solution in Ref. [11] is available.
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